Центр боли в головном мозге

Центр боли в головном мозге thumbnail

Всё о том, как возникает это чувство и можем ли мы им управлять.

Откуда берётся боль

Боль — это эволюционно выгодный механизм. Она сообщает о повреждениях, которые требуют внимания: «Проблема! Сделай что-нибудь, а то мы истечём кровью».

Чтобы механизм был эффективным, боль должна правильно отображать характер повреждений, но это происходит далеко не всегда. Одно и то же повреждение может ощущаться по-разному, а иногда вообще не чувствоваться. Например, увлёкшись каким-то делом, вы можете не заметить, что порезались. Нервы мгновенно передают сигнал о повреждении, а вы замечаете порез, только когда видите кровь.

В то же время люди могут чувствовать несуществующие повреждения. Например, в своей книге «Мозг рассказывает» профессор нейрофизиологии Вилейанур Рамачандран описывает своего пациента, который чувствовал боль в сжатом кулаке ампутированной руки. Когда с помощью системы зеркал пациент увидел отражение другой руки и разжал кулак, фантомная боль исчезла.

Есть ещё один хороший пример : строителю в ботинок воткнулся длинный гвоздь. Любое движение гвоздя вызывало сильную боль, и, чтобы вытащить его, строителю дали обезболивающее. Когда гвоздь извлекли и сняли ботинок, оказалось, что нога не повреждена. Гвоздь прошёл между пальцев, не задев кожи. Бедняга тут же исцелился.

Этот и многие другие случаи доказывают, что мозгу далеко до объективности. Да, наши ощущения сильно зависят от рецепторов, но не только от них. Рецепторы не могут быть субъективными: они честно отсылают данные о том, что произошло в тканях, а вот как это интерпретирует мозг — совсем другой вопрос.

Мы разберём, какие механизмы ответственны за восприятие боли и ошибки в интерпретации, как она возникает и путешествует по нервным клеткам организма.

Как в мозге рождается боль

Сигналы передаются от рецепторов в спинной мозг

В своей статье о боли нейробиолог Гермес Солензол (Hermes Solenzol) описал, как боль добирается от рецепторов до мозга.

Болевые рецепторы — ноцицепторы — состоят из миллиардов нервных волокон разных типов. Более крупные А-волокна передают быструю боль, например от укола иглой. Мелкие С-волокна чуть запаздывают и передают сигналы о более медленной и продолжительной боли. Вместе эти рецепторы обеспечивают чувствительность кожи, мышц, суставов, глубоких тканей и внутренних органов.

Тела нейронов, отдающих нервные волокна любого типа, лежат в спинномозговых ганглиях — нервных узлах, расположенных по бокам спинного мозга. Через них информация о повреждении попадает в задний корешок спинного мозга. При этом один сигнал может подавлять другой.

Например, длительная тупая боль, доставляемая медленными волокнами типа С, может подавляться быстрым уколом или щипком, который передают быстрые А-волокна. Вы просто перестанете чувствовать тупую боль, хотя её источник никуда не денется.

По этой же причине мы инстинктивно потираем больное место: касание и надавливание передают другие тактильные ощущения, которые снижают чувство боли.

Сигналы обрабатываются в головном мозге

Из спинного мозга сигнал попадает в головной мозг: через ствол мозга в таламус — центральный процессор всей сенсорной информации. В разных ядрах таламуса обрабатываются визуальные данные, звук, тактильные ощущения.

Из таламуса сигнал уходит в три области мозга:

  • Соматосенсорную кору. Эта структура устанавливает, из какой части тела пришёл сигнал о боли.
  • Островковую долю, или островок. Именно за счёт островка мы понимаем, насколько сильна боль, и испытываем по поводу неё какие-либо эмоции. Кроме того, островок играет роль и в формировании других эмоций: печали, радости, злости, отвращения, эмпатии и даже любви. Возможно, поэтому эмоции сильно влияют на восприятие боли. Доказано, что влюблённость снижает её: когда люди держатся за руки, боль стихает .
  • Переднюю поясную кору (ППК). Эта структура мозга связана со знаниями, устранением ошибок и конфликтов, вниманием и мотивацией. За счёт неё появляется стимул что-то сделать с болью (или не делать ничего). ППК решает, какие действия мы будем предпринимать, исходя из текущего положения дел.

Как видите, не существует горячей линии, по которой сигнал о повреждении доходил бы до мозга. Он проходит через столько сложных и многофункциональных структур, что легко может притупиться или, наоборот, развернуться на полную. При обработке сигналов мозг определяет его значимость, исходя из ситуации, предыдущего опыта, влияния культуры, ваших знаний и сенсорной информации: звука, запаха, картинки.

Боль — это не объективное ощущение, а вольная интерпретация мозга. Боль рождается именно в нём.

Можем ли мы управлять болью? Напрямую нет. Не забывайте, что ваше «я» — это тоже продукт мозга, один из его процессов. Поэтому вы управляете своим мозгом не больше, чем движение стрелки часов управляет механизмом этих часов.

Но мы можем что-то сделать, чтобы притупить чувство боли, через управление своими эмоциями и создание подходящей обстановки.

Как облегчить боль

Создайте комфортную обстановку

Мы описали только восходящие пути боли — от периферии в мозг, но существуют и обратные, нисходящие пути. Мозг не только определяет, как вы будете чувствовать боль, но и может влиять на чувствительность нервов: понижать её или повышать.

Когда вы нервничаете, мозг считает, что обстановка опасная. Поэтому он заставляет периферические нервы передавать ему больше информации. В результате вы острее чувствуете боль даже от незначительных стимулов.

Но мозг может сделать и обратное: если вы спокойны и находитесь в безопасности, периферические нервы могут воспринимать меньше стимулов и вы будете чувствовать меньше боли. Это выяснили ещё во время Второй мировой войны: солдаты чувствовали гораздо меньше боли, чем должны были при своих травмах, потому что были счастливы оказаться в безопасности, а не на поле боя.

Поверьте в то, что не будет больно

Воспринимайте события позитивно. Люди с быстрым эмоциональным восстановлением действительно чувствуют меньше боли.

Измените тактильные ощущения

Рецепторы в коже предают не только сигналы о боли, но и другие ощущения: касания, давление, холод, тепло. Поэтому многие практики вроде растирания, согревания или охлаждения, перетягивания бинтами или наклеивания тейпов помогают унять боль, не влияя при этом на её причину.

Читайте также:  Головная боль картинки приколы

Попробуйте изменить тактильные ощущения в болезненной области, и боль тоже изменится.

Не драматизируйте

Поскольку боль — личное переживание, некоторые люди, чтобы передать её интенсивность, прибегают к художественным описаниям и чересчур драматизируют: «Боль впивается в меня раскалёнными иглами», «Боль полыхает пожаром».

Такие фразы вызовут сочувствие со стороны других людей, но могут обернуться против самого рассказчика. Описав боль красочными фразами, вы убеждаете свой мозг, что так оно и есть, и начинаете чувствовать свои фантазии.

Боритесь со страхом через знания

Неизвестность вызывает страх и тревожность, а они увеличивают восприятие боли. Если вас мучает боль неизвестного характера, сразу же сходите к врачу и узнайте от него максимум о своём заболевании.

Если он не дал достаточно информации, сходите к другому доктору или поищите научные труды на эту тему. Сделайте всё, чтобы успокоиться и почувствовать, что с вами в целом всё в порядке. Доказано , что знание причины боли помогает её уменьшить.

Не терпите боль: это может плохо закончиться

Дело даже в не том, что вы можете запустить какое-то опасное заболевание. Нервные рецепторы привыкают к боли и становятся более восприимчивыми. Не доводите до структурных изменений в нейронах, сделайте всё, чтобы избавиться от боли, пока она не переросла в хроническую.

Читайте также

  • Как стресс влияет на мозг →
  • Механизм страха: как отучить мозг бояться →
  • Как меняется мозг в течение менструального цикла →

Источник

Исследовательская группа Университета Дьюка обнаружила у мышей небольшую область мозга, которая может глубоко контролировать чувство боли животных.

Несколько неожиданно, но этот мозговой центр отключает боль, а не включает ее. Он также расположен в области, где мало кто мог бы подумать о поиске антиболевого центра – в миндалевидном теле, которое часто считается домом негативных эмоций и реакций, таких как реакция на борьбу или бегство и общая тревога.

“Люди действительно верят, что существует центральное место для облегчения боли, вот почему плацебо работает”, – говорят ученые. – Вопрос в том, где в мозгу находится центр, который может отключить боль.”

“Большинство предыдущих исследований были сосредоточены на том, какие области возбуждаются болью”, – сказала профессор нейробиологии Ван Фан, старший автор работы, -Но существует так много областей, обрабатывающих боль, что вам придется отключить их все, чтобы остановить боль. Тогда как этот единственный центр может отключить боль сам по себе.”

Эта работа является продолжением более ранних исследований в лаборатории Вана, изучающих нейроны, которые активируются, а не подавляются общими анестетиками. В исследовании 2019 года ученые обнаружили, что общая анестезия способствует медленному сну, активируя супраоптическое ядро мозга. Но сон и боль отделены друг от друга, что является важным ключом, который привел к новому открытию.

Исследователи обнаружили, что общая анестезия также активирует определенное подмножество тормозных нейронов в центральной миндалине, которые они назвали нейронами CeAga (CeA означает центральную миндалину; ga указывает на активацию общей анестезией). У мышей центральная миндалина относительно больше, чем у людей, но нет причин думать, что у нас есть другая система контроля боли.

Используя технологии, которые лаборатория Вана впервые использовала для отслеживания путей активированных нейронов у мышей, команда обнаружила, что CeAga была связана со многими различными областями мозга, что было неожиданностью.

Дав мышам слабый болевой стимул, исследователи смогли составить карту всех активированных болью областей мозга. Они обнаружили, что по меньшей мере 16 мозговых центров, которые, как известно, обрабатывают сенсорные или эмоциональные аспекты боли, получают тормозную информацию от CeAga.

– Боль – это сложная реакция мозга, – говорит Ван Фан. “Она включает в себя сенсорную дискриминацию, эмоции и вегетативные (непроизвольные реакции нервной системы) реакции. Лечение боли путем гашения всех этих мозговых процессов во многих областях очень трудно достичь. Но активация ключевого узла, который естественным образом посылает тормозные сигналы в эти области обработки боли, была бы более надежной.”

Используя технологию под названием оптогенетика, которая задействует свет для активации небольшой популяции клеток в головном мозге, исследователи обнаружили, что они могут отключить самосохранительное поведение мыши, когда она чувствует себя некомфортно, активируя нейроны CeAga. Облизывание лап или вытирание морды были “полностью отменены” в тот момент, когда включался свет для активации антиболевого центра.

-Это было радикально, – говорят ученые. – Они просто мгновенно перестают лизаться и тереться.”

Когда ученые ослабили активность нейронов CeAga, мыши отреагировали так, как будто восприятие снова стало интенсивным или болезненным. Они также обнаружили, что низкодозированный кетамин, обезболивающий препарат, который позволяет чувствовать, но блокирует боль, активирует центр CeAga и не будет работать без него.

Теперь исследователи собираются искать препараты, которые могут активировать только эти клетки для подавления боли в качестве потенциальных будущих обезболивающих. “Другая вещь, которую мы пытаемся сделать, – это секвенировать эти клетки”.

Ученые надеются найти среди этих специализированных клеток ген редкого или уникального рецептора клеточной поверхности, который позволил бы очень специфическому препарату активировать эти нейроны и облегчать боль.

General anesthetics activate a potent central pain-suppression circuit in the amygdala, Nature Neuroscience (2020). DOI: 10.1038/s41593-020-0632-8

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Физиолог Вячеслав Дубынин о простагландинах, принципах работы анальгетиков и возникновении хронических болей.

Система болевой чувствительности — это одна из сенсорных систем, которые относятся к разряду чувствительности тела. Есть кожная чувствительность, есть мышечная чувствительность, есть внутренняя чувствительность, есть болевая чувствительность. Соответственно, есть отдельно болевые рецепторы, проводящие пути именно для болевых сигналов, а также обрабатывающие центры в спинном мозге, в головном мозге, которые очень специфично занимаются болью.

Читайте также:  Насморк боль в пояснице головной боль

Для любой сенсорной системы важно осознавать и понимать, а на что она реагирует, то есть что является тем исходным запускающим сигналом, который вызывает дальнейшую цепочку событий. Для зрительной системы это электромагнитные волны, свет, для слуховой системы — колебания окружающей среды. Для болевой системы это повреждение наших клеток и тканей.

Боль в принципе возникает по самым разным поводам: ударился — больно, обжегся — больно, электрическим током стукнуло — больно. Что объединяет эти ситуации? Их объединяет сам факт повреждения. То есть повреждаются клетки и ткани, и из этих поврежденных клеток выделяются специальные химические вещества — их называют еще «сигналы SOS». Эти вещества влияют на наши болевые рецепторы, то есть на чувствительные нервные окончания. Там возникают электрические импульсы, которые уже убегают в центральную нервную систему.

Первый момент, в котором нужно разобраться, — а что это за сигналы SOS? Подобные молекулы выделяют и обычные клетки нашего организма, и специализированные — макрофаги или тучные клетки. И в список этих веществ входит гистамин, простагландины, субстанция P, кальций, калий. Довольно большой список. И у каждой молекулы есть своя функция.

Ключевое значение для запуска именно болевых сигналов имеют простагландины. Это молекулы, которые образуются из липидных молекул нашей мембраны. То есть каждая наша клетка окружена жироподобной липидной оболочкой, в состав которой входит арахидоновая кислота. Когда мембрана повреждается, арахидоновая кислота становится доступной для действия специальных ферментов, которые из нее вырезают сигнальные молекулы, сообщающие о том, что есть повреждения. И ключевое значение имеют молекулы, которые называются простагландины.

Есть ферменты, которые все это производят. Ключевое значение имеет фермент, который называется циклооксигеназа. Поэтому первый способ ослабить боль — это помешать поврежденной зоне образовывать простагландины. Обширная группа лекарственных препаратов является так называемыми блокаторами циклооксигеназы. То есть они не дают возникать простагландинам в достаточной концентрации, и боль становится не такой сильной.

В чем тут проблема? Наша система болевой чувствительности — это сигнализация. Она сообщает нашему мозгу о том, что где-то повреждения и нужно срочно принимать меры. Эта сигнализация, к сожалению, порой работает слишком назойливо. Обычная сигнализация в вашем автомобиле — у вас есть кнопочка для ее выключения. Сигнализация, которая идет от поврежденного участка кожи, — кнопки выключения напрямую у нас нет. Мы не можем сказать нашей болевой системе: «Да, я уже знаю, проблема существует, я осознал, я с этим работаю, перестань болеть». Поэтому существует огромная потребность в анальгетиках — препаратах, которые снижают болевые ощущения, передачу болевых сигналов. Блокаторы циклооксигеназы как раз к этой категории относятся.

Большинство веществ, которые вы знаете как анальгетики, которые продаются в аптеках, как правило, без рецептов, — это блокаторы образования простагландинов. Аспирин, анальгин, парацетамол, диклофенак — все это относится к этой категории. Все здесь не очень просто, потому что на самом деле циклооксигеназ вообще-то две: циклооксигеназа-1 и циклооксигеназа-2. Классические ненаркотические анальгетики, блокирующие циклооксигеназы, работают и с той и с другой, но чаще с первой.

Первая циклооксигеназа кроме передачи болевых сигналов выполняет кучу других важных функций, и поэтому, если вы ее блокируете, получаете довольно много побочных эффектов, например, на уровне желудка. Поэтому более современная группа лекарственных препаратов из этой категории — это блокаторы циклооксигеназы второго типа. Эта циклооксигеназа функционирует именно в очагах повреждения, в очагах воспаления. Это полезно знать, выбирая анальгетики, для того чтобы уменьшить, например, зубную боль или снять еще какие-то проблемы.

Простагландины и другие вещества, например калий, действуют на болевые рецепторы. В этих рецепторах, в этих отростках нейронов возникают нервные импульсы, убегающие дальше в спинной и головной мозг. Откуда берутся болевые рецепторы? Их источником являются специальные сенсорные нейроны, которые в случае нашего тела (то есть туловище, руки, ноги) расположены рядом со спинным мозгом в особых скоплениях — в спинномозговых ганглиях. Спинномозговых ганглиев 31 пара, это соответствует делению нашего спинного мозга на 31 сегмент. Получается, что сам нейрон находится рядом со спинным мозгом внутри позвоночного столба, а его чувствительный отросток — длинный дендрит — дотягивается, например, до кончиков пальцев и реагирует на боль.

В случае головы восприятием болевых сигналов занимается тройничный нерв — пятый черепной нерв, который формирует три этажа: лобный, верхнечелюстной, нижнечелюстной, — и три ветви сходятся в единый тройничный нерв. Поэтому он называется тройничным. Дальше болевые сигналы от головы тоже попадают в центральную нервную систему.

Отросток идет в кожу или во внутренние органы, потому что болевая чувствительность у нас работает по всему объему тела. А аксон этого нейрона входит, например, в спинной мозг. В спинном мозге основное скопление нейронов, серое вещество спинного мозга, и оно образует с каждой стороны три выроста: задние рога спинного мозга, боковые и передние. Болевые сигналы попадают в задние рога спинного мозга, и там происходит их первичная обработка. Эта первичная обработка заключается в очень простой вещи: задние рога спинного мозга не пропускают слабый болевой сигнал.

Жизнь такая, что наше тело все время испытывает довольно много повреждений, и, если бы все эти сигналы проходили в головной мозг, осознавались, у нас бы все время что-то болело. Поэтому важно слабый болевой сигнал останавливать, а пропускать только значимый. Для того чтобы фильтровать болевую чувствительность в задних рогах серого вещества, существуют специальные тормозные нейроны, стоящие над контактом сенсорного нейрона с той нервной клеткой, которая дальше будет передавать сигнал.

То есть существует основной синапс, передающий болевые сигналы, и над ним тормозной блок, который реализуется вставочными нервными клетками двух типов. Часть из них использует в качестве медиатора гамма-аминомасляную кислоту, а часть — эндорфины. И если мы хотим снять боль уже на уровне спинного мозга, мы можем использовать вещества, похожие на гамма-аминомасляную кислоту, и вещества, похожие на эндорфины. И это будут вещества с центральным анальгетическим, обезболивающим действием.

Читайте также:  Головные боли какие могут быть болезни

Блокаторы циклооксигеназы работают на периферии. И они вообще не влияют на нервные клетки, поэтому, например, к ним не возникает привыкания и зависимости — по крайней мере, в явном виде. А если вы начинаете использовать вещества, похожие на ГАМК, вещества, похожие на эндорфины, которые будут влиять уже на синаптическую передачу в спинном мозге, здесь вы должны быть готовы к тому, что будет формироваться и привыкание, и зависимость.

Основной группой препаратов из этой категории являются морфиноподобные соединения, потому что морфин — это молекула, которая похожа на эндорфины. С давних времен опиоиды и опиум использовались, для того чтобы снимать боль. К сожалению, морфин и морфиноподобные молекулы вызывают очень быстрое привыкание и зависимость — к сожалению потому, что сейчас мы уже настолько хорошо знаем систему болевой чувствительности, что нам понятно: по-настоящему сильную боль мы можем снимать только морфиноподобными молекулами эффективно и надежно. То есть сама передача сигнала в синапсах, которые в задних рогах серого вещества так организована, что, если мы очень мощно активируем морфиноподобное торможение, мы можем выключить вообще любую боль. Это то, что не способны сделать аспирин, анальгин.

Морфиноподобными препаратами мы можем вообще блокировать болевую чувствительность. При этом не пострадает, например, кожная чувствительность, мышечная, потому что подобный информационный фильтр есть только в тех каналах, которые передают болевые сигналы. Но морфиноподобные молекулы, к сожалению, вызывают очень быстрое привыкание и зависимость. Очень быстро модифицируется работа синапсов, начинает требовать еще, еще и еще эту молекулу. Поэтому, конечно, медицинское использование подобных веществ строго ограничено. Все это сугубо рецептурные препараты, и применять их нужно только в экстренных случаях: при тяжелых ожогах, онкологии или тяжелых физических травмах. Дело усугубляется тем, что морфиноподобные молекулы работают в центрах положительных эмоций, вызывают эйфорию.

Если болевой сигнал достаточно силен, то он проходит через задние рога серого вещества спинного мозга. Дальше у него две судьбы. Он может запускать реакции, рефлексы на уровне спинного мозга и подниматься в головной мозг. Рефлексы на уровне спинного мозга всем известны — это рефлексы отдергивания. В ситуации, когда вы укололи или обожгли руку и ее отдернули, идет сокращение мышц-сгибателей. Это очень древняя программа, которая носит оборонительный характер, и без этого мы не существуем. Это врожденный рефлекс, мы не обучаемся ему.

А когда сигнал передается в головной мозг, нужны специальные тракты, специальные пути. Аксоны клеток заднего рога серого вещества спинного мозга внутри спинного мозга переходят на противоположную сторону и в боковом канальчике белого вещества поднимаются в головной мозг и достигают таламуса. Таламус — это информационный фильтр на входе в кору больших полушарий, и там есть зрительные центры, слуховые центры, двигательные центры, в том числе центры, связанные с передачей боли. Эти центры находятся во внутренней части таламуса, в медиальных ядрах таламуса. И оттуда сигнал уходит в кору больших полушарий.

Кроме того, часть сигналов идет ниже и достигает гипоталамуса. В гипоталамусе располагаются центры, связанные с нашими потребностями, эмоциями, центры, которые запускают реакцию на стресс. И для этих центров болевые сигналы очень важны. Гипоталамус обеспечивает такое эмоциональное восприятие боли, и наш мозг сконфигурирован таким образом, что боль со стопроцентной вероятностью вызывает негативные эмоции. И чем сильнее боль, тем сильнее эти негативные эмоциональные переживания. Это все логично, это заставляет мозг формировать поведенческие программы, направленные на избегание боли.

За реакцию на боль отвечает в основном задняя часть гипоталамуса, и там находятся нервные клетки, которые запускают изменения в вегетативной нервной системе. Возникает стрессорное состояние, начинает чаще биться сердце, расширяются зрачки, усиливается потоотделение, начинает выделяться адреналин из надпочечников. Кроме того, в задней части гипоталамуса находятся центры, которые активируют оборонительное поведение.

И там еще одна важная развилка. Эта реакция может наступать в виде реакции страха, убегания, избегания, затаивания либо как агрессивная реакция, когда мы как бы нападаем на источник неприятностей. Основной поток болевых сигналов из таламуса поднимается в кору больших полушарий. И здесь есть два варианта.

Первый поток идет специфично в теменную кору, в теменную долю. Это примерно макушка нашей головы, и, если вниз от макушки вот так проводить, вот здесь находятся зоны, которые анализируют чувствительность нашего тела, в том числе здесь есть карта нашего тела, позволяющая оценить болевые сигналы, их интенсивность, специфику, потому что боль бывает разная: острая, тянущая, ноющая.

Кроме того, есть такой тотальный неспецифический поток из таламуса на всю кору больших полушарий, который подтормаживает работу мозга. И специфика болевых сигналов такова, что, когда такой сигнал поднимается в кору, он говорит всем остальным нервным процессам, что нужно прекращаться, нужно разбираться, где болит, где повреждение. В этом смысле боль имеет первый приоритет, и когда у вас что-то заболело, то заниматься какой-то другой деятельностью бывает сложно, особенно если это сильная боль.

Сильная длительная боль крайне неполезна для нашего мозга. И если человек долгое время терпит боль, особенно если это сильная боль, то нервные клетки, синапсы между ними, способны перестраиваться, и болевой сигнал будет проводиться все легче и легче. И это путь к патологии боли, к возникновению хронических болей. Поэтому крайне не рекомендуется терпеть долгую интенсивную боль. Нужно использовать анальгетики. И всерьез нужно разбираться, что является источником боли, и принимать более серьезные меры.

Вячеслав Дубынин, доктор биологических наук, профессор кафедры физиологии человека и животных биологического факультета МГУ, специалист в области физиологии мозга.

ПостНаука

Источник